3,604 research outputs found

    On the solution of integral equations with a generalized cauchy kernel

    Get PDF
    In this paper a certain class of singular integral equations that may arise from the mixed boundary value problems in nonhomogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernel has strong singularities of the form (t-x) sup-2, x sup n-2 (t+x) sup n, (n or = 2, 0x,tb). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique

    On the solution of integral equations with a generalized cauchy kernal

    Get PDF
    A certain class of singular integral equations that may arise from the mixed boundary value problems in nonhonogeneous materials is considered. The distinguishing feature of these equations is that in addition to the Cauchy singularity, the kernels contain terms that are singular only at the end points. In the form of the singular integral equations adopted, the density function is a potential or a displacement and consequently the kernal has strong singularities of the form (t-x)(-2), x(n-2) (t+x)(n), (n is = or 2, 0 x, t b). The complex function theory is used to determine the fundamental function of the problem for the general case and a simple numerical technique is described to solve the integral equation. Two examples from the theory of elasticity are then considered to show the application of the technique

    Stress intensity factors in two bonded elastic layers containing cracks perpendicular to and on the interface. Part 1: Analysis

    Get PDF
    The basic crack problem which is essential for the study of subcritical crack propagation and fracture of layered structural materials is considered. Because of the apparent analytical difficulties, the problem is idealized as one of plane strain or plane stress. An additional simplifying assumption is made by restricting the formulation of the problem to crack geometries and loading conditions which have a plane of symmetry perpendicular to the interface. The general problem is formulated in terms of a coupled system of four integral equations. For each relevant crack configuration of practical interest, the singular behavior of the solution near and at the ends and points of intersection of the cracks is investigated and the related characteristic equations are obtained. The edge crack terminating at and crossing the interface, the T-shaped crack consisting of a broken layer and a delamination crack, the cross-shaped crack which consists of a delamination crack intersecting a crack which is perpendicular to the interface, and a delamination crack initiating from a stress-free boundary of the bonded layers are some of the practical crack geometries considered

    On the solution of integral equations with strongly singular kernels

    Get PDF
    Some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m ,m greater than or equal 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t-x) sup -m , terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results

    On the solution of integral equations with strong ly singular kernels

    Get PDF
    In this paper some useful formulas are developed to evaluate integrals having a singularity of the form (t-x) sup-m, m or = 1. Interpreting the integrals with strong singularities in Hadamard sense, the results are used to obtain approximate solutions of singular integral equations. A mixed boundary value problem from the theory of elasticity is considered as an example. Particularly for integral equations where the kernel contains, in addition to the dominant term (t,x) sup-m, terms which become unbounded at the end points, the present technique appears to be extremely effective to obtain rapidly converging numerical results

    Construction IT in 2030: a scenario planning approach

    Get PDF
    Summary: This paper presents a scenario planning effort carried out in order to identify the possible futures that construction industry and construction IT might face. The paper provides a review of previous research in the area and introduces the scenario planning approach. It then describes the adopted research methodology. The driving forces of change and main trends, issues and factors determined by focusing on factors related to society, technology, environment, economy and politics are discussed. Four future scenarios developed for the year 2030 are described. These scenarios start from the global view and present the images of the future world. They then focus on the construction industry and the ICT implications. Finally, the preferred scenario determined by the participants of a prospective workshop is presented

    vaccination in a patient with Behcet's disease

    Get PDF
    Case report: A 25-year-old man with Behcet's disease was admitted because of weakness of the lower limbs and difficulty in urination. He had received a rabies vaccination 2 months previous because he had been bitten by a dog.Findings: Clinical and laboratory findings supported acute transverse myelitis. A hyperintense lesion and expansion at the level of conus medullaris was detected on spinal magnetic resonance imaging.Conclusion: Although neurologic involvement is one of the main causes of mortality and morbidity in Behcet's disease, the factors that aggravate the involvement of the nervous system are still unclear. Vaccination may have been the factor that had activated autoimmune mechanisms in this case. To our knowledge, involvement of the conus medullaris in Behcet's disease after rabies vaccination has not been reported

    The mode 3 crack problem in bonded materials with a nonhomogeneous interfacial zone

    Get PDF
    The mode 3 crack problem for two bonded homogeneous half planes was considered. The interfacial zone was modelled by a nonhomogeneous strip in such a way that the shear modulus is a continuous function throughout the composite medium and has discontinuous derivatives along the boundaries of the interfacial zone. The problem was formulated for cracks perpendicular to the nominal interface and was solved for various crack locations in and around the interfacial region. The asymptotic stress field near the tip of a crack terminating at an interface was examined and it was shown that, unlike the corresponding stress field in piecewise homogeneous materials, in this case the stresses have the standard square root singularity and their angular variation was identical to that of a crack in a homogeneous medium. With application to the subcritical crack growth process in mind, the results given include mostly the stress intensity factors for some typical crack geometries and various material combinations

    The crack problem in bonded nonhomogeneous materials

    Get PDF
    The plane elasticity problem for two bonded half planes containing a crack perpendicular to the interface was considered. The effect of very steep variations in the material properties near the diffusion plane on the singular behavior of the stresses and stress intensity factors were studied. The two materials were thus, assumed to have the shear moduli mu(o) and mu(o) exp (Beta x), x=0 being the diffusion plane. Of particular interest was the examination of the nature of stress singularity near a crack tip terminating at the interface where the shear modulus has a discontinuous derivative. The results show that, unlike the crack problem in piecewise homogeneous materials for which the singularity is of the form r/alpha, 0 less than alpha less than 1, in this problem the stresses have a standard square-root singularity regardless of the location of the crack tip. The nonhomogeneity constant Beta has, however, considerable influence on the stress intensity factors

    Nonlinear Schr\"odinger Equation with a White-Noise Potential: Phase-space Approach to Spread and Singularity

    Full text link
    We propose a phase-space formulation for the nonlinear Schr\"odinger equation with a white-noise potential in order to shed light on two issues: the rate of spread and the singularity formation in the average sense. Our main tools are the energy law and the variance identity. The method is completely elementary. For the problem of wave spread, we show that the ensemble-averaged dispersion in the critical or defocusing case follows the cubic-in-time law while in the supercritical and subcritical focusing cases the cubic law becomes an upper and lower bounds respectively. We have also found that in the critical and supercritical focusing cases the presence of a white-noise random potential results in different conditions for singularity-with-positive-probability from the homogeneous case but does not prevent singularity formation. We show that in the supercritical focusing case the ensemble-averaged self-interaction energy and the momentum variance can exceed any fixed level in a finite time with positive probability
    corecore